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Abstract We dimss quantum dynamics of a panicle in a time and space periodic field. We 
consider a soluble model of a particle in a plane wave, and reduce the quantum problem to a 
random Riccati equation. We show that solutions of the Riccati equation experience an abmpt 
change from a periodic to non-periodic behaviour under a d a t i o n  of ciassical parameters with 
respect to the Planck constant. As a wnsequence the classical results on panicle trapping by an 
electromagnetic wave need a quantum correction. 

1. Introduction 

It is a basic question in the theory of penodic quantum systems [I] whether the solutions 
are quasiperiodic or not. The problem is closely related to the stability of these systems. 
We cannot answer this question through a perturbation expansion because of the small 
denominators, which are an obstacle to a proof of the quasiperiodicity of the sum. In 
this paper we discuss a soluble model of stochastic dynamics equivalent to the quantum 
mechanics. The model allows a classical description of the phenomena which lead to 
quantum instability. Our model is a particular example of a particle in an electromagnetic 
field discussed in [2-51. It is known that the particle is either trapped by the wave (if the 
wave amplitude is large with respect to its frequency) or moves in a complicated oscillatory 
way (if the frequency of the wave is sufficiently large). 

We consider in OUT model the following scalar potential 

m map . v = ; j ( a 2 - p Z ) c o s ( ~ + ~ t ) - -  sin(2~+2wt)+morwsin(x+wt)+mpwcos(x+ot).  

(1) 
2 

We can find a particular solution of the classical Hamilton-Jacobi equation 

1 
2m arsr + -(OS,)’ + v = 0. 

The solution is 

(3) 
m 
4 = ma cos(x + wr) - mp sin(x + wt)  + -(or’ + p’)t. 

t On leave of absence from Institute of Theoretical Physics, University of Wroclaw, 50-204 Wrodaw, k’l. Maxa 
Boma 9. Poland. 
t Supported by the Gulbenkian Foundation. 
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S&) could be considered as the Hamilton-Jacobi description of the separhx. The classical 
equation of motion resulting from solution (3) has the form (it becomes the conventional 
pendulum’s separahix equation when UJ = @ = 0) 

Ly sin(x + Ot) + @ cos(x +ut). (4) 
dx  
dt 
-= 

Equation (4) is explicitly integrable. Let 

F = x + o f  and u=tan($e). 

Then, 

du 
dt 
- = ;(U - B ) U 2 + L y W  + f(UJ + @). 

(5) 

It is clear from (6) that properties of its solution depend in a crucial way on whether 
u2 + pZ 2 a? (a particle is trapped) m a2 + D2 < w2 (lack of trapping). 

In the first case the particle moves with the wave and for large time the only &ect of the 
nonlinear dynamics is a phase shift (the phase shift tends to a constant with an exponential 
speed), In the second case the particle oscillates with its own frequency 

2. Stochastic description 

In order to investigate the quantum dynamics we apply a probabilistic formulation of the 
Feynman integral. We write the solution of the Schrtklinger equation in the form 

h(x) = (WOW = E  

Here,t>O 

and the expectation value is with respect to the Brownian motion defined as the Gaussian 
process with the covariance 

E[b(t)b(s)] = min(t, s). (9) 

The generator of U, is 

1 ih 1 -H = -A + -V, iti 2m ih 
Assume we know a particular (complex) solution S, of the Hamilton-Jacobi equation (2) 
with the initial condition So. Let us write the initial state 9 in the form 
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Then formula (8) can be expressed as 

where qr is the solution of the stochastic equation 

1 
(13) dq, = -,V& dr  + 0 db 

with the boundary condition qr(x)lrl = x .  

equation (13) with the initial condition 
There is another (equivalent) formula which expresses et by a solution of the stochastic 

4r(x)lr=o = x .  (14) 

In such a c a e  4(q&)) in (6) is replaced by 4(ql(x)).  
We assume that all functions discussed here are boundary values of analytic functions. 

Then, the formulae (12) and (13) make sense. We discussed a slightly modified version 
of (12) and (13) in our earlier papers [6,7]. There, we applied a particular solution of 
the Schriidinger equation instead of the Hamilton-Jacobi equation. In such a case the 
exponential factor in the square brackets of (12) is absent. 

Note that h enters (12) only through q.  The formal classical limit (fi + 0) of (12) and 
(13) is 

where xz is the solution of the equation 

- VS,(x,) h r  
d r  m 

with the initial condition x+., = x .  

mechanics with the potential (I)). The stochastic equation (13) reads 
We discuss in this paper the model (3) (which by (2) corresponds to the quantum 

dq = a sin(q + ot)dt + B cos(4 + ut) dt + U db. (17) 

Using the exponential representation of the trigonometric functions we can transform (17) 
into the Riccati equation 

(18) _ -  clz - m) + fiwz + f i ( o z z .  dt 

The Riccati equation can subsequently be linearized by the substitution 

Then, W fulfils a linear equation 



4250 Z Haba 

In the model (17) we may choose 

z(t) = exp(-iot - i q ( r ) )  

then 

and f i ( t )=- i  
a + i p  rr-i,8 

2 2 fo A = - -- 

Hence from (19) 

We can also consider 

z*(r) = exp(iot + iq(t)) 

then 

and f i ( t ) = i  rr - i s  
fo = -- h=- 2 2 

Hence from (19) 

W, = exp ( - f(rr + ip) exp(ios + iq(s)) ds (22) 

Both fulfil linear equations 

whereas W, 

where o means the Stratonovitch differential [SI (the Shatonovitch form in (24) follows 
from (17)). 

Equations (23) and (24) can be rewritten as a well-defined system of two linear stochastic 
differential equations. For this purpose let us introduce the notation 

then we can write (23) in the form 

d V  
dt 

- = A o V  
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where (the multiplication is understood in the Stratonovitch sense) 

With vb = -i(U(db/dt) + o) and 

The solution of (27) can be expressed in the form 

v, = RtV0 

where we write R as a product 

'R.= MID,  

where 

* t  

p, = e x p l  vb = exp(-iwt -io&,) 

and D, is the solution of the equation (with the initial condition 'DO = 1) 

d'G - = B,V, 
dt 

where 

where 

8(t)  = y2p;' = y2exp(iwt+ iub,). 

We can solve (32) by iteration (the series is convergent). 

(32) 

(33) 

(34) 

3. The effect of quantum noise 

At U = 0 we would get the classical solution (6). We are interested in the effect of a 
complex noise on the behaviour of the deterministic solution. 

Let us denote dW/dt = W', then (26) can be expressed as a system of two It0 equations 

dW = W'dt 

dW' = -i w - - W'dt + y2Wdr - ioWdb ( z"m> 

(35) 
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where the relation f o db = f db + fdfdb  (see [8])  between Stratonovitch and It0 
differentials has been used. Let w = E[W] ,  then w is the solution of a deterministic 
equation 

In order to derive (36) we write (35) in the It0 integral form, then we take the expectation 
value and use the property of the It0 integral 

E[ /” fdbs] = 0. 

Rewriting the resulting integral equation for the expectation value E [ W ]  again in a 
differential form we obtain (36). We can see from (36) that the only effect of noise on 
the expectation value is a change of the frequency 

R 
2m 

0-k0--. 

Hence, from (7) we can see ( y  is defined in (28)) that if 

then the quantum noise has no effect on stability, changing only the frequency (or the 
Lyapunov exponent). However, if condition (37) is not fulfilled, then the noise can change 
the exponential increase of w@) into an oscillatory behaviour or vice versa. So, if 

then the classical variable W ( t )  ((23) at U = 0) is periodic whereas the quantum expectation 
value E[ W ]  grows exponentially. If 

then the classical variable grows exponentially whereas the quantum expectation value is 
periodic. We can conclude that quantum effects are important for particle trapping near the 
critical value of the wave frequency 101 = 2y. 

The explicit form of the solution of (36) is 

w(t) = A(t)w(O) + W),(O) (40) 
dw 

where 
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and 

(42) 
1 

C = --[exp(iu+t) - exp(iw-r)] 
U 

with 

where 

(43) 1 U* = i(uo + U) 

fi 
2m 

uo = U -  - and w = 

Formulae (40)444) are interesting from the point of view of an expansion in y in 
(32) and (33) and in the Feynman formula (8) (the Dyson expansion). We can see by the 
comparison of the expansion in y of w(t )  (equation (40)) with (32) and (33) that uo will be 
the small denominator in the expansion. The appearance of the small denominator indicates 
a qualitative change of the dynamics when uo + 0. It is clear that this structural change is 
the trapped-untrapped transition discussed above. 

So far, we have computed the expectation value of W and not of q or cosq, which 
are the physically meaningful variables. Although q can be expressed by W from (21), the 
relation between these variables is nonlinear, therefore we need all correlation functions of 
W in order to compute the correlations of q. For this purpose we need to study the effect 
of noise on higher-order correlation functions. The two-point function is 

(45) E[W(t)W(s)I = E[W(t, s)lE[W(s)l+ E[W(s)’I 

where W(t, s) means that the initial condition in (23) is at s instead of 0. We used the 
additivity of the integral in the derivation of (45) and the independence of increments of 
the Brownian motion. E[W(t ,  s)] can be computed from (36). It remains to compute the 
second term in (45). For this purpose let us compute 

d(W2) = 2WdW = 2WW‘dt 

d(WW’) = dWW‘+ WdW’ 

d(W’W’) = 2W’dW’+ dW’dW’. 

Then, we use the stochastic equations (35) in order to express the differentials of W’ in 
terms of W and W’. We integrate (46) and subsequently take the expectation value. As a 
result we obtain a system of three equations for the expectation values wzz = E[W’W’], 

= E[W2] and W I Z  = E[WW’]. The equations can be expressed in differential form as 
an equation for the vector WT = (WZ,  W I Z .  W I I )  

dW - = AW 
dr (47) 

where 
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with 

Equation (47) is equivalent to a third-order equation with constant coefficients. If the 
inequality (37) is fulfilled, then the quantum corrections do not change the classical 
behaviour (tu11 = tu@ = O)2); if not then the quantum corrections can change the periodic 
behaviour into a non-periodic one. We could continue the method to compute correlation 
functions of arbitrary order. The problem is reduced to linear ordinary differential equations 
of an increasing order. 

4. Change of variables in the Feynman integral 

We wish to rewrite the Feynman formula (12) in terms of the W variables. We can easily 
check that in the model (3) 

Hence, the Feynman formula can be expressed in the form 

assuming that we are able to define the square root unambiguously (the right-hand side is 
well defined for small t ,  when W is close to 1; the square root can be defined uniquely 
from 1 by the requirement of the semigroup composition law for Ur). 

We are interested now in the variable WW* in (50). Using (23) and (24) we can 
derive an equation for WW, in the same way as we obtained one for W z .  Denote 
rT = (WW,, WW:, W’W,, W’WL) then 3 fulfils the following Stratonovitch stochastic 
differential equation 

_ -  d3 - 0 0 5  
dt 

where 

with 

db 
ub = -io - iu--. 

dt 

For a discussion of solutions of (52) it is useful to decompose the matrix 0 

O = O , + B  (53) 
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where 

0 1  1 0  

and 

0 0  0 0 
O B  0 0 

(54) 

(55) 

where 

db 
dt 

B = iu-. 

Now, the solution of (51) can be expressed in the form 

<I = 5 5 0  (54) 

where 

Ft = expWC)Gt (57) 

where G, is the solution of the equation (with the initial condition Go = 1) 

(58) _ -  dG - exp(-t0,)Bexp(t0,)G. 
dt 

Equation (58) can be used for a successive expansion in e. The exponentiation of 0, is 
equivalent to the problem of solving a system of four linear differential equations with 
constant coefficients. This can be done in an elementary way. It is sufficient to use the 
solution (40) of (23) and (24) at f i  = 0. Inserting the initial conditions resulting from (14) 
we obtain 

xexp(-$) (p-exp(-+) -p+exp($)) (59) 
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Equations (SO), (59) and (60) give the semiclassical formula (15) €or the motion of a quantum 
particle in a plane wave. 

Note that from (19) 

exp(-iq(s) - ius) = -2(u - ip)-'W'(s)W(s)-'. (61) 

From (59) and (61) we can get the classical solution q,(s) (6) describing the trapped (if 
2y o) or untrapped (if 2 y  < o) motion of a particle. If the initial wavefunction I) is 
localized at the origin, for example 

then the happing is expressed by the localization of $, at x = -ut. Moreover, the 
exponential behaviour of W, expresses the exponential decay of x + or to a constant. The 
lack of trapping means that I ) t (x)  remains localized at the origin and the probability density 
I+t(x)12 varies periodically with the frequency p. This picture must be corrected by the 
caustic singularities corresponding to a zero of W,. W, = 0 if 

exp(-ir) = (u + ip)-' i o  + pcot  ( (9) 
This equation has a solution only if the particle is happed (&' c 0). 

We can find the matrix exp(tO,) (equation (54)) by differentiation of W&) and E@). 
Then, we obtain a convergent expansion in ti of 7 (equations (56x58)); in particular, an 
expansion of WW.. 

In order to compute the expectation value of (-)-I we can again use an 
expansion in t i .  For this purpose we compute E[(WW,(t))"l. The method is the same 
as in the computation of E[W(t)"]. For n = 1 denote 

x, = ww: - W*W' xz = ww: - W*W' x, = ww. x, = w'w:. 
We obtain for the vector X the equation 

dX 
-=  s 2 o x  
dt 

where 

0 -U* 0 0 

0 0  
"=[-; ;* 2oyz 4 

From (63) we can compute E[WW.]. The result is that the classical frequencies /.&* in (60) 
are shifted by w + w i fi/2m. We can use the solution of (62) to compute (W W,)' and 
continue the procedure to higher orders. 

We return finally to the main result of this paper discussed in section 3. So, when 
o - 2 y  is small a change of the frequency of order A f m  can have a drastic effect on the 
large time behaviour of the variable W. We would like to estimate the effect of the change 
of behaviour of W on the behaviour of the wavefunction I), (50). It is not easy to see 
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this effect from an expansion in A around the classical solution (59). We consider another 
expansion. We may restrict ourselves to periodic functions $ ( x )  in (50). Expanding $ in a 
Fourier series we obtain from (61) 

In section 3 we have shown that w EIW'] (as well as w. and w:) 
undergo a transition from periodic to non-periodic behaviour if w - 2y N h / h .  Moreover, 

E [ W ]  and w' 

(and a similar formula for w', w ,  and w i ) .  Hence, we obtain immediately the effect of the 
quantum noise on trapping if we make, in (50) and (64), an approximation 

E [ (w> W' (a)-'] E[W]" E[W']" (4-r' 

Then, from (65), the effect of the change of the behaviour of E[W] on the behaviour of 
@t(x) is the same as in the semiclassical approximation discussed after (59) and (60). 

In order to investigate an error of the approximation (66) let us write 

W = W + ( W - W ) - U J + Q = W  (67) 

Then 

Q fulfils the stochastic differential equation 

3 W' db 
2m dr 

Q = - - - i u w ' o -  

with the initial condition Q(0)  = Q'(0) = 0. 
It can be seen from (69) that Q is of order fi. Moreover, we can rewrite (69) as a 

system of first-order equations and express their solution in terms of the random matrix R, 
defined in (30H34). Then W'/ W in (64) expressed by Q in (68) is of the form 

(70) 

where F and G a e  certain functionals which we do not determine here. We expect that 
(66) is a good approximation in the sense that the corrections expressed symbolically in 
(70) are. of order f i  uniformly in time if R behaves in an oscillatory way (then the particle 
remains untrapped). The transition to the exponential behaviour of 72 occurs (as follows 

W' 
4 1  + f i F ( R ) ) ( l  +frG(R))-' 
W 
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from the discussion in section 3) at o - 2y 2: fa/&. We can still apply formula (70) 
because the nominator and the denominator increase at the same rate. Equation (70) when 
inserted into (64) leads to the same conclusion in the case of an exponential growth of W as 
the approximation (66), i.e. that the particle is trapped if Iw-fi/Zml < 2y.  In principle, we 
could check our arguments inserting (68) into (64) and computing the expectation values in 
(50) of powers of Q and Q' resulting from an expansion of the denominator. At each order 
the computation of the expectation values is reduced to a system of ordinary differential 
equations with constant coefficients (as in equation (47)). The difficulty of solving such a 
system of equations increases rapidly with the order. Nevertheless, we should be able to 
prove at each order that the transition from the periodic to aperiodic behaviour of expectation 
values of powers of Q and Q' occurs at o = 2y +fi /2m + o@). 

Summarizing, we have shown that the random variable W linearizing the quantum 
mechanical model of a particle in a plane wave can undergo an abrupt change of behaviour. 
This occurs when the wave amplitude is close to the classical critical value corresponding 
to the particle transition between trapped and untrapped states. Then, quantum effects 
of order f i lm can cause the transition. The behaviour of variables built from W is well 
approximated by a convergent expansion'in f i . We gave some arguments showing that the 
change of the behaviour of the variable W linearizing the model implies a qualitative change 
of the behaviour of the wavefunction q , ( x )  corresponding to a quantum description of the 
trapped-untrapped transition. The model sheds some light also on the meaning of small 
denominators in quantum mechanics. 

References 

[I] Bellissard J 1985 Trends and Developments in the Eighties ed S Albeverio and Ph Blanchard (Singapore: 

[2] ONeil  T M 1965 Phys. Fluids 8 2255 
[3] Ott E and Dum C T 1971 Phys. Nuids 14 959 
141 Menyuk C H 1985 Phys. Rev. A 31 3282~ 
[5] Smith G R and Pereira N R 1978 Phys. Fluidr 21 2253 
(61 Haba 2 1993 Phys. Left, 175A 371 

Haba Z 1993 Wroclaw Preprint No 828 
[8] Ikeda N and WaIanabe S 1981 Stochn"eDiff=rentlnlEquationsMdDiff"usionPmcesses (Amsterdam: North- 

World Scientific) 

Holland) 


